
LANtasticÒ Programmer's Reference

This document is a reference to the programmatic interface for Artisoft's LANtastic Network
Operating System (NOS) Version 4.00. Some knowledge of either C or assembler, and the DOS
conventions for system call interrrupts, is necessary for you to fully understand the information
in this document.

Table Of Contents
µTable Of Contents 1
Calling Conventions 3
Assembly Language 3
Assembler Interface 3
C Language 3
C Language Interface 4
The LANtastic Interface 5
Network Pathnames 5
Error Codes And Error Handling 5
Configuration Testing 9
Testing For The Existence Of The NetBIOS 9
Testing For The Existence Of The Redirector, Server And LANPUP 9
Testing For The Existence Of SHARE 10
Determining The Network Software Version 10
Testing For The Alternate NetBIOS Interface - Interrupt 2AH 11
INT 2AH Function 0: INSTALLATION CHECK 11
INT 2AH Function 1: EXECUTE NetBIOS WITH NO ERROR RETRY 11
INT 2AH Function 5: GET RESOURCE INFORMATION 12
Controlling Redirected Printer Streams 13
Controlling Printers With Interrupt 2A 13
SET SPOOLED OUTPUT TO COMBINE MODE 13
SET SPOOLED OUTPUT IN SEPARATE MODE 13
FLUSH PRINTER OUTPUT 14
Controlling Printers With Interrupt 21 14
RETURN REDIRECTED PRINTER MODE 14
SET REDIRECTED PRINTER MODE 14
FLUSH PRINTER OUTPUT 15
DOS Compatible Network Functions 16
GET MACHINE NAME 16
SET PRINTER SETUP 17
GET PRINTER SETUP 18

LANtastic Programmer's Reference - 1

GET REDIRECTED DEVICE ENTRY 18
REDIRECT DEVICE 19
CANCEL DEVICE REDIRECTION 20
NOS Extended Network Functions 21
GET LOGIN ENTRY 21
LOGIN TO A SERVER 22
LOGOUT OF A SERVER 22
GET USERNAME ENTRY 23
GET INACTIVE SERVER ENTRY 23
CHANGE PASSWORD 24
DISABLE ACCOUNT 24
GET ACCOUNT 25
LOGOUT FROM ALL SERVERS 26
COPY FILE 26
SEND UNSOLICITED MESSAGE 27
GET LAST RECEIVED UNSOLICITED MESSAGE 28
GET MESSAGE PROCESSING FLAG 28
SET MESSAGE PROCESSING FLAG 29
POP UP LAST RECEIVED MESSAGE 29
GET QUEUE ENTRY 30
SET QUEUE ENTRY 31
CONTROL QUEUE 31
GET PRINTER STATUS 32
GET STREAM INFO 33
SET STREAM INFO 34
CREATE USER AUDIT ENTRY 34
GET ACTIVE USER INFORMATION 35
GET SHARED DIRECTORY INFORMATION 36
GET USERNAME FROM ACCOUNT FILE 37
TRANSLATE PATH 37
CREATE INDIRECT FILE 38
GET INDIRECT FILE CONTENTS 38
GET SERVER'S TIME 39
SCHEDULE SERVER SHUTDOWN 39
CANCEL SERVER SHUTDOWN 40
STUFF SERVER KEYBOARD BUFFER 40
GET REDIRECTED PRINTER TIMEOUT 41
SET REDIRECTED PRINTER TIMEOUTS 41
GET DOS SERVICE VECTOR 42
SET DOS SERVICE VECTOR 42
GET MESSAGE SERVICE VECTOR 43
SET MESSAGE SERVICE VECTOR 43
Other System Calls 44
Obtaining A List Of Shared Resources 44
Summary Of Network System Calls 45
DOS Compatible Calls 45

LANtastic Programmer's Reference - 2

LANtastic Network Operating System Calls 45

tc "Calling Conventions" \l2§Calling Conventions

tc "Assembly Language" \l3§Assembly Language

Each NOS function is described using an entry in a standard format. For example:

5F80H

tc "Assembler Interface" \l3§Assembler Interface

INPUT:
AX
5F80H

BX
Login entry index (0 based)

ES:DI
Pointer to 16-byte buffer to receive logged in server name

OUTPUT:
NC
If no error

CY
If error occurred (or no more entries are available)

AX
Error code if error

LANtastic Programmer's Reference - 3

BX
Same value used to call function (you must increment BX yourself to get next entry)

DL
Adapter number used for log in

ES:DI
Pointer to ASCIZ server name which does NOT include the \\ prefix

The INPUT section describes registers and values to use when calling the function. The
OUTPUT section describes the information returned by the function. The outputs are always
either in registers or in data areas addressed explicitly by an input parameter. Register identifiers
are conventional Intel menmonics. Unless otherwise stated, NOS preserves registers across the
call except for the flags. By convention, most function calls return the carry flag set to indicate
an error (with the error number in AX), and leave the carry flag clear if the function was
successful. Exceptions to this are noted in the description. References to ASCIZ strings mean
null terminated strings of bytes.

tc "C Language" \l3§C Language

Each NOS function call supported by the C library (see Chapter 14) is specified like this:

extern int NOSGetLogin(int *npIndex, char *cpServer, int *npAdapter);

Pointer to int containing login entry index

Pointer to server name buffer

Pointer to int where returned adapter number is saved
You must include the NOSLIB.H header file in your program to obtain the necessary external
declarations for all the NOS functions. The header file NOS.H contains declarations for all the
data structures relevant to NOS programming.

LANtastic Programmer's Reference - 4

tc "C Language Interface" \l2§Assembly Language Interface

The files that support the assembly language interface to NOS are as follows:

NOS.INC The include file that defines all NOS constants and data structures

NETBIOS.INC

tc "C Language Interface" \l2§C Language Interface

The files that support the C library interface to NOS are as follows:

NOS.H The header file that defines all NOS constants and data structures

NCB.H The header file that defines the NetBIOS NCB structures.

NOSLIB.H The header file that defines the function call interface to the C library

NOSLIB.LIB The object module library containing the NOS functions callable from C. (Note
that versions of this file exist for both Microsoft C and Borland C.)

LIBTEST.C An API test program that includes an example of each NOS function call.

LANtastic Programmer's Reference - 5

tc "The LANtastic Interface" \l2§The LANtastic Interface

The NOS services fall into two categories: standard DOS compatible network functions, and
extended network functions specific to LANtastic. Since NOS is compatible with NetBIOS, the
NetBIOS functions are also available using the INT 5C interface.

tc "Network Pathnames" \l3§Network Pathnames

Many functions refer to network paths. NOS network paths are fully compatible with DOS
network paths. The general syntax for a network path is:

Where:

For example:

Refers to a file located on server MAIN_SERVER. The path required to access the file is
PROGS\DATA\SAMPLE.TXT. The name PROGS is a shared resource name that refers to a
network resource.

Some DOS networks (for example, the IBM-PC LAN) do not fully support paths for all systems
calls (in particular FIND FIRST). NOS, however, supports full paths for all system calls that can
take a path argument. This means that many public domain file and directory utilities will still
operate when invoked with a network path.

LANtastic Programmer's Reference - 6

tc "Error Codes And Error Handling" \l3§Error Codes And Error
Handling

All DOS compatible system calls and all NOS specific system calls, return error codes. The error
code number is always returned in AX. When an error occurs, the carry flag (CY) is set. The C
library functions return a value of -1 and stores the error code in NOSerrno. NOS provides a
mechanism for expanding the error code number into a text string.

This is a list of error codes that may be returned by NOS:

Error Number
Meaning

01H
Invalid function number

02H
File not found

03H
Path not found

04H
File open limit has been exceeded or no handles left

05H
Access denied

06H
Invalid handle

07H
Memory control blocks destroyed

08H
The memory limit has been exceeded

09H
Invalid memory block address

0AH
Invalid environment

LANtastic Programmer's Reference - 7

0BH
Invalid format

0CH
Invalid access code

0DH
Invalid data

0EH
RESERVED

0FH
Invalid drive was specified

10H
Attempt to remove current directory

11H
Not same device

12H
No more files

13H
Attempt to write on write protected disk

14H
Unknown unit

15H
Drive not ready

16H
Unknown command

17H
Data CRC error

18H
Bad request structure length

19H
Seek error

1AH
LANtastic Programmer's Reference - 8

Unknown media

1BH
Sector not found

1CH
No paper

1DH
Write fault

1EH
Read fault

1FH
General failure

20H
Sharing violation

21H
Lock violation

22H
Invalid disk change

23H
FCB unavailable

24H
Sharing buffer overflow

25H
RESERVED

26H
Cannot complete file operation

27H-31H
RESERVED

32H
Network request not supported

33H
Network node ??????????????? is not listening

LANtastic Programmer's Reference - 9

34H
The name already exists on the network

35H
Cannot locate network name

36H
The network is busy

37H
Server connection to network node ??????????????? broken

38H
The NetBIOS command limit has been exceeded

39H
The network adapter has malfunctioned

3AH
Incorrect response received from network node ???????????????

3BH
Unexpected network error from network node ???????????????

3CH
Incompatible network node ???????????????

3DH
Print queue full on network node ???????????????

3EH
No room for print file on network node ???????????????

3FH
The print file has been deleted on network node ???????????????

40H
The network name has been deleted

41H
You have been denied access on network node ???????????????

42H
Invalid network device

LANtastic Programmer's Reference - 10

43H
The network name was not found

44H
The network name limit has been exceeded

45H
The session limit has been exceeded

46H
Network node ??????????????? has been temporarily paused

47H
The network request to network node ??????????????? was denied

48H
Print or disk redirection is paused on network node ???????????????

49H
Invalid network version

4AH
Account has expired

4BH
Password has expired

4CH
Login attempt invalid at this time

4DH
Disk limit has been exceeded on network node ???????????????

4EH
Not logged into network node ???????????????

4FH
RESERVED

50H
The file already exists

51H
RESERVED

LANtastic Programmer's Reference - 11

52H
Cannot make directory entry

53H
Failure on critical error

54H
Too many redirections or logins to network node ???????????????

55H
Duplicate redirection or login to network node ???????????????

56H
Invalid username or password

57H
Invalid parameter

58H
Network data fault

59H
Function not supported on network

5AH
Required system component not installed

When you expand the error code into a text string, NOS substitutes the network node name for
the string of question marks in the error text. To expand an error code into a text string you need
to issue a multiplex interrupt (INT 2FH) with the following parameters:

Assembler Interface

INPUT:
AH
5

AL
0 for installation check

for error code (in pre DOS 4.00)

LANtastic Programmer's Reference - 12

1 or 2 for error code in DOS 4.00

BX
Error code

OUTPUT:
NC
If error code converted to text

CY
If error code can't be converted

ES:DI
Pointer to ASCIZ text buffer containing error text This is a read only text buffer and you must
not alter the text in this buffer.

C Interface

nError
Error number

cpMessage
A RESERVED error code causes the error string to be set to "General failure". The maximum
width for the question mark field is 15 characters. The error text is automatically adjusted to
remove trailing spaces from the text buffer. For example the text returned for error 33H on node
HOST1 would be:

The following code sequence will work for DOS 3.x, 4.x and 5.x:

ax, error_number
; Get error number

LANtastic Programmer's Reference - 13

bx, ax
; Place in BX also

ah, 5

2fh

Here is an example using the C library interface (the printf %Fs far string specifier is peculiar to
Microsoft C):

...

...

// Could not convert error number

...

printf("Error %d: %Fs\n", NOSerrno, fpErrbuffer);

In addition, the routine NOSperror() has been defined for the NOS C library:

cpMessage
This routine uses the NOSGetErrorText() function to print the error message identified by the
value of NOSerrno. Since NOSerrno is reset with every library call, you can use NOSperror()
to print the most recent error message. NOSperror() prints the string parameter in the call,
followed by a ": ", followed by the NOS error message. For example:

NOSperror("NOSLogin");

Will print:

LANtastic Programmer's Reference - 14

On standard output.

LANtastic Programmer's Reference - 15

tc "Configuration Testing" \l2§Configuration Testing

tc "Testing For The Existence Of The NetBIOS" \l3§Testing For The
Existence Of The NetBIOS

Before you can execute NetBIOS calls, you must install the NetBIOS software. On a LANtastic
network you accomplish this by installing the Artisoft LANBIOS (LANBIOS2 for 2Mbps
networks, AEX and AILANBIO for Ethernet.) On a LANtastic network you can simply check
for the presence of the LANtastic redirector. If the redirector is present then so is the
NetBIOS.The following code fragment shows how to test directly for the presence of the
NetBIOS.

; An illegal NCB is used to determine if the NetBIOS is present

illegal_NCB
db 7fh
; Illegal command

db 63 dup (0)
; Rest of NCB is 0
;
; NETBIOS_PRESENT - Determine if we have a NETBIOS present
;
; IN:
;
ES = Current Data segment
;
; OUT:
;
BX Destroyed
;
FLAGS
;
CARRY if not present

NETBIOS_present

es

ax, 355ch
; Get 5C vector

LANtastic Programmer's Reference - 16

21H

ax, es

es

ax, 0F000h

no_vector
; Yes. Then not a real 5C

ax, bx
; Test for 0

have_vector

no_vector:

; Show not present

have_vector:

al, 0

bx, offset illegal_NCB

5cH

al, al
;Will get changed on illegal command

no_vector

NETBIOS_present
endp

LANtastic Programmer's Reference - 17

tc "Testing For The Existence Of The Redirector, Server And " \
l3§Testing For The Existence Of The Redirector, Server And LANPUP

You can issue a multiplex interrupt (2FH) to determine if the redirector, server or LANPUP
software are present. Note that if the redirector is present on a LANtastic network, then the
LANBIOS must also be present. This is an easy way to test for NetBIOS presence.

Assembler Interface

INPUT:
AX
B800H

OUTPUT:
AL
0 If neither redirector or server installed

NZ
Redirector, server or LANPUP installed

BL
Contains bits indicating which software is installed

10000000b Redirector has pop up receive message capability.

01000000b Server is installed

00001000b Redirector is installed

00000010b LANPUP is installed

LANtastic Programmer's Reference - 18

C Interface

extern int NOSPresence();

Example

// Error

if (i & 0x40)

printf("LANtastic server is installed");

tc "Testing For The Existence Of SHARE" \l3§Testing For The
Existence Of SHARE

You can issue a multiplex interrupt (2FH) to determine if SHARE is present. Note that this
function is officially an "undocumented" DOS function.

Assembler Interface

INPUT:
AX
1000H

OUTPUT:
AL
0FFh If SHARE is installed, 0 if not installed

C Interface

extern int NOSSharePresence();

LANtastic Programmer's Reference - 19

tc "Determining The Network Software Version" \l3§Determining The
Network Software Version

You can issue a multiplex interrupt (2FH) to determine which version of the network software is
running.

Assembler Interface

INPUT:
AX
B809H

OUTPUT:
AH
Major version number

AL
Minor version number

C Interface

extern int NOSGetVersion();

The version numbers are returned as decimal numbers. For example, version
3.03 would return AH equal to 3 and AL equal to 3. In C, this statement:

Prints:

Use this printf statement to print the correct version number:

Will print:

LANtastic Programmer's Reference - 20

Note

tc "Testing For The Alternate NetBIOS Interface - Interrupt 2AH" \
l3§Testing For The Alternate NetBIOS Interface - Interrupt 2AH

The normal interface to the NetBIOS is via interrupt 5CH. You can also call NetBIOS using the
alternate interrupt 2AH. The LANtastic redirector supports the 2A interface as well. The
LANtastic redirector intercepts 2A interrupts and reformats them to 5C interrupts. Here is a list
of the supported interrupt 2A functions.

INT 2AH Function 0: INSTALLATION CHECK

Checks if an interrupt 2AH interface is installed.

Assembler Interface

INPUTS:
AH
0

OUTPUTS:
AH
0 if not installed

not 0 if installed

C Interface

extern int NOSCheck2A();

LANtastic Programmer's Reference - 21

INT 2AH Function 1: EXECUTE NetBIOS WITH NO ERROR RETRY

Executes a NetBIOS command.

Assembler Interface

INPUTS:
AX
01xxH or 0401H to execute NetBIOS with no error retry

0400H to execute NetBIOS with error retry

Error codes that are automatically retried are:

 No sessions resources (09H)

 No listen (12H)

 Interface busy (21H)

ES:BX
Pointer to NCB

LANtastic Programmer's Reference - 22

OUTPUTS:
AL
NetBIOS error code

AH
0 if no error

1 if error

C Interface

extern int NOSExecNetBIOS(BOOL bRetry, struct Ncb *cpNcb);

TRUE to execute NetBIOS with error retry, FALSE otherwise

Points to NetBIOS NCB

INT 2AH Function 5: GET RESOURCE INFORMATION

Returns NetBIOS resources that are available for use.

Assembler Interface

INPUTS:
AH
5

OUTPUTS:
BX
Available names (16 - names in use)

CX

LANtastic Programmer's Reference - 23

Available NCBs (free NCBs)

DX
Available sessions (max sessions minus pending sessions)

C Interface

extern int NOSGetResources(int *npNames, int *npNcbs, int *npSessions);

Pointer to int where # of available names will be stored

Pointer to int where # of available NCBs will be stored

Pointer to int where # of available sessions will be stored

Example

// Error

printf("%d names, %d NCBs, %d sessions", nNames, nNcbs, nSessions);

LANtastic Programmer's Reference - 24

tc "Controlling Redirected Printer Streams" \l2§Controlling Redirected
Printer Streams

You can control how LANtastic sends output to redirected printers in three ways:
Œ You can set a combine mode that does not separate multiple print jobs when programs

terminate or when the printer is opened.
Œ You can set a separate mode that separates print jobs when a program terminates or when

the printer is opened and closed.
Œ You can flush redirected output, thereby forcing the printer to begin printing.

These functions implement the NET program's NET LPT COMBINE, NET LPT SEPARATE
and NET LPT FLUSH commands. Two software interfaces allow you to control these
functions. These interfaces consist of the interrupt 2AH interface and a standard interrupt 21H
interface.

A bug in LANtastic version 4.0 causes the interrupt 2A printer control functions
to have no effect. The interrupt 21 functions work correctly.

The DOS COMMAND.COM program always issues a "flush spooled output"
call when it prompts for command input. This has the effect of forcing print jobs to be
separated.Therefore these interrupts are ineffective across multiple program invocations
performed through COMMAND.COM. The only exception to this is within DOS batch
files, since COMMAND.COM does not prompt for command input while executing a
batch file.

tc "Controlling Printers With Interrupt 2A" \l3§Controlling Printers With
Interrupt 2A Functions

SET SPOOLED OUTPUT TO COMBINE MODE

All printer output is combined into a single print job regardless of the printer being opened,
closed or programs terminating. Flush printer output calls will still be honoured however, and
separate print jobs will be spooled.

Assembler Interface

INPUTS:
AX
0601H

LANtastic Programmer's Reference - 25

Note

Note

OUTPUTS:
None

C Interface

extern int NOSSetCombine();

SET SPOOLED OUTPUT IN SEPARATE MODE

Printer output is not combined when multiple programs are run, or when the printer is opened or
closed. This command implicitly starts a new print job.

Assembler Interface

INPUTS:
AX
0602H

OUTPUTS:
None

C Interface

extern int NOSSetSeparate();

FLUSH PRINTER OUTPUT

Printer output is flushed and a new print job is started. If no output exists to be flushed, then this
function has no effect.

Assembler Interface
LANtastic Programmer's Reference - 26

INPUTS:
AX
0603H

OUTPUTS:
none

C Interface

extern int NOS2AFlush();

tc "Controlling Printers With Interrupt 21" \l3§Controlling Printers With
Interrupt 21 Functions

RETURN REDIRECTED PRINTER MODE

Returns the current printer mode.

Assembler Interface

INPUTS:
AX
5D07H

OUTPUTS:
DL
0 Redirected output is being combined

1 Redirected output is being separated

LANtastic Programmer's Reference - 27

C Interface

extern int NOSGetPrinterMode();

Returns the value of DL as the function value: 0 means combined, 1 means separated
SET REDIRECTED PRINTER MODE

Sets the current printer mode. Setting separated mode implicitly starts a new print job.

Assembler Interface

INPUTS:
AX
5D08H

DL
0 Set redirected output to be combined
1 Set redirected output to be separated.

OUTPUTS:
None

C Interface

extern int NOSSetPrinterMode(int nMode);

0 means combine, 1 means separate

FLUSH PRINTER OUTPUT

Printer output is flushed and a new print job is started. If no output exists to be flushed, then this
function has no effect.

Assembler Interface

INPUTS:
AX

LANtastic Programmer's Reference - 28

5D09H

OUTPUTS:
None

C Interface

extern int NOSFlush();

LANtastic Programmer's Reference - 29

tc "DOS Compatible Network Functions" \l2§DOS Compatible Network
Functions

LANtastic supports the standard DOS network system call functions with the exception of GET
and SET PRINTER SETUP STRING (5E02H and 5E03H). Although you can issue these calls
from a program they have no effect. This is because LANtastic relies upon the system manager
to define the printer setup strings using the NET_MGR program.

GET MACHINE NAME

GET MACHINE NAME returns the name that your machine is known by on the network. You
may use the name and NetBIOS name number returned by this function to perform NetBIOS
commands. You must not use any other NetBIOS names added by LANtastic .

Assembler Interface

INPUT:
AX
5E00H

DS:DX
Pointer to 16 byte buffer where ASCIZ machine name is returned

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

CL

LANtastic Programmer's Reference - 30

NetBIOS name number of machine name on first adapter used by the redirector.

CH
0 If machine name is not set

Not zero if machine name has been set

DS:DX
Points to ASCIZ machine name

On return the machine name is space padded up to the full fifteen characters
allowed in the name. The last byte is set to null. All fifteen characters are significant for
NetBIOS names.

C Interface

extern int NOSGetMachineName(char *cpName, int *npName, BOOL *pbName);

Points to buffer to hold machine name

Points to int to save NetBIOS name number

Points to BOOL, set TRUE if name is set, FALSE if not

LANtastic Programmer's Reference - 31

Note

Example

char cpName[16];
int i;
int nNBname;
BOOL bNameset;

if (NOSGetMachineName(cpName, &nNBName, &bNameset) == -1)

else {

printf("Machine name not set");

// Null terminate the name

for (i = 0; i < 16; i++)

if (cpName[i] == ' '){

cpName[i] = '\0';

break;

}

printf("Machine is %s, NetBIOS name # is %d", cpName, nNBname);

SET PRINTER SETUP

This function initializes a setup string that is sent to the network printer at the start of each print
job.

Assembler Interface

INPUT:
AX
5E02H

BX
Redirection list index (0 based)

LANtastic Programmer's Reference - 32

CX
Setup string size

DS:SI
Pointer to printer setup string

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSSetPrinterSetup(int nIndex, int nLen, char *cpStr);

Redirection list index

Length of setup string (in case it contains nulls)

Pointer to setup string

LANtastic does not process this request since printer setup strings are
controlled by the system administrator using the NET_MGR program. The system call
does not return an error. The C library faithfully calls NOS despite the fact that nothing
happens.

LANtastic Programmer's Reference - 33

Note

GET PRINTER SETUP

GET PRINTER SETUP will return the setup string set with the SET PRINTER SETUP function.

Assembler Interface

INPUT:
AX
5E03H

BX
Redirection entry index (0 based)

ES:DI
Pointer to buffer to contain setup string

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

CX
Length of setup string

C Interface
extern int NOSGetPrinterSetup(int nIndex, int *npLen, char *cpStr);

Redirection list index

Points to int where length of setup string is saved
LANtastic Programmer's Reference - 34

Pointer to buffer for setup string

LANtastic does not process this request since printer setup strings are
controlled by the system administrator using the NET_MGR program. The system call
does not return an error, however, and the length of the setup string (CX) returned will be
0. Again, the C library calls NOS despite this lack of activity.

GET REDIRECTED DEVICE ENTRY

GET REDIRECTED DEVICE ENTRY returns information about a single redirected device (see
REDIRECT DEVICE function.) You can use this function to build a list of redirected devices.

Assembler Interface

INPUT:
AX
5F02H

BX
Redirection entry index (index 0 specifies the first entry)

DS:SI
Pointer to 16-byte buffer for local device name

ES:DI
Pointer to 128-byte buffer to receive the network path referred to by the redirected device

OUTPUT:
NC

LANtastic Programmer's Reference - 35

Note

If no error

CY
If error occurred

AX
Error code if error

BL
Type of device: 03H for printer, 04H for disk

CX
Value stored by REDIRECT DEVICE function (should always be 0 for NOS)

DX
May be destroyed

BP
May be destroyed

DS:SI
ASCIZ device name

ES:DI
ASCIZ network path

C Interface

extern int NOSGetRedirDevice(int nIndex, char *cpName, char *cpPath,

WORD *wpDevice);

int holding redirected device index

Points to buffer for device name

Points to buffer for path

LANtastic Programmer's Reference - 36

Points to WORD to hold device type. 0xFF masks the device type.

Example

printf("Valid device, type %d", wFlags & 0xFF);

REDIRECT DEVICE

REDIRECT DEVICE allows you to make network connections between local devices and
network paths.

Assembler Interface

INPUT:
AX
5F03H

BL
Type of device, 03H Printer, 04H Disk

CX
Value to store with redirected device (Set this to 0 for compatibility with NOS)

DS:SI
Pointer to ASCIZ local device name. For printer devices specify: PRN, LPT1, LPT2, LPT3,
COM1 or COM2. For disk devices specify A:, B:, C:,

ES:DI
Pointer to network path for redirected device

LANtastic Programmer's Reference - 37

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSRedirDevice(int nDevice, char *cpName, char *cpPath);

Device type

(Note that no CX equivalent is required, it's always 0)

Points to name of device

Points to network path
Example

CANCEL DEVICE REDIRECTION

CANCEL DEVICE REDIRECTION allows you to break a network connection and restore the
local device to its former state.

Assembler Interface

INPUT:
AX
5F04H

DS:SI
Pointer to ASCIZ device name

LANtastic Programmer's Reference - 38

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSCancelRedir(char *cpName);

Points to device name

LANtastic Programmer's Reference - 39

tc "NOS Extended Network Functions" \l2§NOS Extended Network
Functions

NOS provides an extended set of network system calls that allow you access to all the LANtastic
functions. These system calls are significantly extended beyond the few calls defined by DOS.

Several functions retrieve indexed data. You always pass the index parameter in the BX register.
The index is always zero based unless otherwise noted. Upon return from the function call, BX
will contain the index of the next table entry. The index of the current entry will be BX minus 1.
If the index passed to the function call in BX refers to an invalid entry, NOS will increment BX
until it finds a valid entry. The call returns this entry and BX is incremented. In these cases, you
must assume only that an index value of BX minus 1 is valid. Some functions take such an index
as a parameter, but do not increment it as described. Study the description of each function call
carefully to see whether the call changes the index.

GET LOGIN ENTRY

Assembler Interface

INPUT:
AX
5F80H

BX
Login entry index (0 based)

ES:DI
Pointer to 16-byte buffer to receive logged in server name

OUTPUT:
NC
If no error

CY
If error occurred (or no more entries are available)

LANtastic Programmer's Reference - 40

AX
Error code if error

BX
Same value used to call function (you must increment BX yourself to get the next entry)

DL
Adapter number used for log in

ES:DI
Pointer to ASCIZ server name which does not include the \\ prefix

C Interface

extern int NOSGetLogin(int *npIndex, char *cpServer, int *npAdapter);

Pointer to int containing login entry index

Pointer to server name buffer

Pointer to int where returned adapter number is saved
Example

// Add double slash prefix

printf("Entry %d, logged into %s on adapter %d\n",

nIx, cpServer, nA);

nIx++;

LANtastic Programmer's Reference - 41

The login entry index (the BX input parameter) corresponds to the index used
in the GET USERNAME ENTRY call (5F83h). A combination of these calls allows you
to enumerate current logged in users.

LOGIN TO A SERVER

Assembler Interface

INPUT:
AX
5F81H

ES:DI
Pointer to server, username and password in the form \\server\username<0>password<0>. (For
LANtastic version 3.0, if no password is used, the string must be: \\server\username<0><0><0>.
In LANtastic version 4.0, two null characters are acceptable.)

BL
Adapter number to use for log in attempt, 0FFH to try all valid adapters, 0-7 to use an adapter
explicitly.

OUTPUT:
FLAGS
NC If no error

CY If error occurred

AX
Error code if error

C Interface

extern int NOSLogin(char *cpLogin, int nAdapter);

Pointer to server, username and password
LANtastic Programmer's Reference - 42

Note

Adapter number to use

LANtastic will convert the input string to uppercase before use.

LOGOUT OF A SERVER

Assembler Interface

INPUT:
AX
5F82H

ES:DI
Pointer to ASCIZ server name in the form \\server

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSLogout(char *cpServer);

Pointer to server name

LANtastic Programmer's Reference - 43

Note

GET USERNAME ENTRY

Assembler Interface

INPUT:
AX
5F83H

BX
Username entry index (0 based). Will not be updated.

ES:DI
Pointer to 16-byte buffer to receive username used for this login

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

BX
Username entry index (not updated.)

DL
Adapter number used for log in

ES:DI
Pointer to ASCIZ username

LANtastic Programmer's Reference - 44

C Interface

extern int NOSGetUserName(int *npIndex, char *cpName, int *npAdapter);

Pointer to int holding username entry index (not updated)

Pointer to buffer for username

Pointer to int to receive adapter number
Example

printf("Entry %d, user %s on adapter %d\n",

nIx, cpUser, nA);

nIx++;

The login entry index (the BX input parameter) corresponds to the index used
in the GET LOGIN ENTRY call (5F80h). A combination of these calls allows you to
enumerate current logged in users.

GET INACTIVE SERVER ENTRY

Assembler Interface

INPUT:
AX
5F84H

BX
Non-logged in server index

ES:DI
Pointer to 16-byte buffer to receive a server name that you are not logged in to, but that is
available for logging in

LANtastic Programmer's Reference - 45

Note

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

BX
Same value used to call function (you must increment BX yourself to get the next entry)

DL
Adapter number the inactive server is on (this number may be used as input to the LOGIN TO
SERVER (5F81H, NOSLogin()) function)

ES:DI
Pointer to ASCIZ server name which does not include the \\ prefix

C Interface

extern int NOSGetServer(int *npIndex, char *cpServer, int *npAdapter);

Pointer to int holding server name entry index

(This is not updated.)

Pointer to buffer for server name

Pointer to int to receive adapter number
Example

LANtastic Programmer's Reference - 46

printf("Server %s available on adapter %d\n",

cpServer, nA);

nIx++;

The redirector maintains the list of available servers. The number of entries in
the list is determined by the value of the LOGINS= switch on the redirector command
line. On a network with more servers present, only the most recently active server names
will be stored. (For example, servers that you recently logged out from.) Servers with
their "Send Server ID" capability disabled will never appear in this list.

CHANGE PASSWORD

Assembler Interface

INPUT:
AX
5F85H

ES:DI
Pointer to string in the form:
\\server\old-password<0>new-password<0>
You must be logged into the server.

This operation is illegal for group accounts.

OUTPUT:
NC
If no error

CY
If error occurred

LANtastic Programmer's Reference - 47

Note

AX
Error code if error

C Interface

extern int NOSChangePassword(char *cpStr);

Pointer to buffer holding a string of the form:

\\server\old-password\0\new-password\0
DISABLE ACCOUNT

DISABLE ACCOUNT disables the current logged in account. It applies only when concurrent
login entries are set to 1 (by NET_MGR.) The account must then be reenabled by the system
manager. After a DISABLE ACCOUNT operation, a logged in user may continue to use the
account until they log out.

Assembler Interface

INPUT:
AX
5F86H

ES:DI
Pointer to ASCIZ server and password string in the form \\server\password. You must be logged
into the server.

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

LANtastic Programmer's Reference - 48

C Interface

extern int NOSDisable(char *cpStr);

Pointer to \\server\password string
GET ACCOUNT

GET ACCOUNT returns the information for the account used to log into this server.

Assembler Interface

INPUT:
AX
5F87H

DS:SI
Pointer to 128-byte buffer to receive account information

ES:DI
Pointer to ASCIZ server string in the form \\server. You must be logged into the server

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

BX
Destroyed (though not used as an input parameter)

LANtastic Programmer's Reference - 49

C Interface

extern int NOSGetAccount(struct user_account *cpAccount, char *cpServer);

Pointer to account structure

Pointer to server name
The buffer format is as follows:

user_account
UA_name db 16 dup (?) ; Zero padded username
UA_internal db 16 dup (0)
UA_description db 32 dup (?) ; Full user description
UA_privilege db ? ; Privilege bits (see bit mask
 ; definitions below)
UA_concurrent db ? ; Maximum concurrent log ins
UA_allowed_times db 42 dup (?) ; 1 bit for each half hour for 7 day
 ; week beginning on Sunday.
 ; 0 means allowed.
UA_internal2 dw ?
UA_last_login_time dw 2 dup (?) ; Last time logged in
UA_account_expiration dw 2 dup (?) ; Expiration date (DOS-format)
 ; Year, Month:Day
UA_password_expiration dw 2 dup (?) ; Expiration date (as above),
 ; 0 Means no expiration date
UA_password_extension db ? ; 1-31 Number of days to reextend
 ; password after change
 ; 0 No extension required
UA_undelete_char db ? ; First letter of UA_name when
 ; account is deleted (first
 ; character of UA_name is replaced
 ; with a zero.)
UA_xprivilege db ? ; Extended privilege

UA_future db 128 - UA_future dup (?)
user_account

Privilege bits for UA_privilege:

UA_privilege_superACL equ 10000000b ; Bypass ACLs
UA_privilege_superqueue equ 01000000b ; Bypass queue protection
UA_privilege_peer equ 00100000b ; Treat as local process
UA_privilege_supermail equ 00010000b ; Bypass mail protection

LANtastic Programmer's Reference - 50

UA_privilege_audit equ 00001000b ; The user can create audit entries
UA_privilege_system equ 00000100b ; The user has system manager privileges
UA_xprivilege_nopwchange equ 00000001b; User cannot change password

Example

printf("%s logged into %s", U.UA_name, cpServer);

LOGOUT FROM ALL SERVERS

This call is equivalent to performing a logout call for all the servers that you are currently logged
into.

Assembler Interface

INPUT:
AX
5F88H

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSLogoutAll();

LANtastic Programmer's Reference - 51

COPY FILE

COPY FILE copies the source file (designated by the source handle) to the destination file
(designated by the destination handle.) The copy is performed by the server and requires no
workstation resources. Both files must reside on the same server.

Assembler Interface

INPUT:
AX
5F97H

CX:DX
Amount to copy (set to FFFF:FFFF to copy entire file)

SI
Source handle

DI
Destination handle

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

DX:AX
Amount copied if successful

LANtastic Programmer's Reference - 52

C Interface

extern int NOSCopyFile(DWORD *dwAmount, int nSource, int nDest);

Pointer to long containing amount to be copied.

(Updated with actual amount copied.)

Source file handle

Destination file handle

Example

// Error processing and header files not shown here

printf("Copied %ld bytes", amount);

SEND UNSOLICITED MESSAGE

This function uses the NOS message service to transmit messages across the network. The
messages have a fixed format. Transmission of a message to yourself is perfectly legal (and
useful.)

This is the format of a message buffer. The 16-byte name fields (MB_machine, MB_server and
MB_user) are null terminated and contain the characters to be matched. For example AB<0>
will match ABxxxxxx. Note that a null string will match any other string, that is, any network
name and will send the message to all machines on the network. The server names should not
contain leading '\\' characters. The names are case sensitive. You should convert any strings to be
uppercase only to match LANtastic conventions.

You can use the MB_server and MB_user fields to restrict the message recipients. For example,
setting the MB_machine and MB_user fields to the null string and the MB_server field to
"XSERVER" will send the message to all users currently logged into the machine XSERVER.

message_buffer
struc

LANtastic Programmer's Reference - 53

MB_reserved db ? ; Reserved field used by system call
MB_type db ? ; User defined message type (see bit mask
 ; definitions below)
MB_machine db 16 dup (?) ; Machine name destination
MB_server db 16 dup (?) ; User must be logged into this server
MB_user db 16 dup (?) ; User must be using this username
MB_originator db 16 dup (?) ; Originator's machine name. Filled in when
 ; message is received
MB_text db 80 dup (?) ; Message text
message_buffer

Message buffer type. The MBT_general type is used by NET and LANPUP to send messages.

MBT_general equ 0 ; General message used by NET, LANPUP and others
MBT_warning equ 1 ; Server warning message

Assembler Interface

INPUT:
AX
5F98H

DS:SI
Pointer to message buffer

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

LANtastic Programmer's Reference - 54

extern int NOSSendMsg(struct message_buffer *cpMsg);

Pointer to message buffer

Currently, no errors are returned by NOS.

GET LAST RECEIVED UNSOLICITED MESSAGE

This function allows you to retrieve a copy of the last message received on this machine.

Assembler Interface

INPUT:
AX
5F99H

ES:DI
Pointer to message buffer (see function 5F98H for buffer format)

OUTPUT:
NC
If no error

CY
If error occurred (or if no message is pending)

AX
Error code if error

C Interface

extern int NOSGetMsg(struct message_buffer far *cpMsg);

Address of message buffer to copy message to.

LANtastic Programmer's Reference - 55

Note

GET MESSAGE PROCESSING FLAG

This function returns a flag indicating the current disposition of the NOS message service on this
machine.

Assembler Interface

INPUT:
AX
5F9AH

OUTPUT:
DL
Flag describing what processing should be done when an unsolicited message is received

NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSGetMsgFlag(int *npFlag);

Pointer to int to receive copy of message processing flag

Format of returned message processing flag:

MPB_beep equ 00000001b ; Beep before message delivered

LANtastic Programmer's Reference - 56

MPB_deliver equ 00000010b ; Deliver message to message service
MPB_auto_pop_up equ 00000100b ; Pop up messages automatically

SET MESSAGE PROCESSING FLAG

This function allows you to control the disposition of the LANtastic message service.

Assembler Interface

INPUT:
AX
5F9BH

DL
Bits describing what processing should be done when an unsolicited message is received (see
GET MESSAGE PROCESSING FLAG function for the format)

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSSetMsgFlag(int nFlag);

New value for message processing flag

LANtastic Programmer's Reference - 57

POP UP LAST RECEIVED MESSAGE

POP UP LAST RECEIVED MESSAGE uses the LANtastic message service to display the last
received message on the screen. The message is placed on the specified line for the specified
time. When LANtastic removes the message, the original screen contents are restored. The user
can remove the message before the display time elapses by pressing the Esc key. LANtastic
cannot pop up a message if the screen is in a graphics mode.

Assembler Interface

INPUT:
AX
5F9CH

CX
Amount of time, in ticks, to leave message on the screen (there are 18.2 ticks per second)

DH
Line number where message will be placed (top line is 0, no validity checking is done)

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSPopUpMsg(int nTicks, int nLine);

Number of ticks

LANtastic Programmer's Reference - 58

Line number

The only error currently returned is 0BH (Invalid format). NOS returns this
error if the screen is not currently in a text mode and the message cannot be displayed.

GET QUEUE ENTRY

Assembler Interface

INPUT:
AX
5FA0H

BX
Queue entry index (0 for first entry)

DS:SI
Pointer to 162-byte buffer to receive queue entry information

ES:DI
Pointer to ASCIZ server in the form \\server

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

BX
Next queue entry index

LANtastic Programmer's Reference - 59

Note

DS:SI
Filled queue entry information buffer

C Interface

extern int NOSGetQueue(int *npIndex, struct queue_entry *cpQueue,

char *cpServer);

Pointer to int holding queue entry index

(This will be updated.)

Pointer to buffer to hold queue entry information

Pointer to buffer for server name
Definition of a queue entry:

queue_entry struc
QE_status db ? ; Status of queue entry
QE_size dd ? ; Size of spooled file
QE_type db ? ; Type of queue entry
QE_output_control db ? ; Control of despooled file
QE_copies dw 1 ; Number of copies
QE_sequence dd ? ; Sequence number of queue entry
QE_spooled_file db 48 dup (?) ; Pathname of spooled file
QE_user db 16 dup (?) ; Username who spooled file
QE_machine db 16 dup (?) ; Machine name user was on
QE_date dw ? ; Date file spooled (DOS format)
QE_time dw ? ; Time file spooled (DOS format)
QE_destination db 17 dup (?) ; ASCIZ Device name or username destination
QE_comment db 48 dup (?) ; Comment field
queue_entry ends

Different queue entry statuses:

QE_status_free equ 0 ; The queue entry is empty
QE_status_update equ 1 ; The queue entry is being updated
QE_status_hold equ 2 ; The queue entry is held
QE_status_wait equ 3 ; The queue entry is waiting for despool
QE_status_active equ 4 ; The queue entry is being despooled
QE_status_cancel equ 5 ; The queue has been canceled

LANtastic Programmer's Reference - 60

QE_status_file_error equ 6 ; The spooled file could not be accessed
QE_status_spool_error equ 7 ; The destination could not be accessed
QE_status_rush equ 8 ; Rush this job

Different types of queue entries:

QE_type_print equ 0 ; Spooled printer queue file
QE_type_message equ 1 ; Spooled message (mail)
QE_type_local_file equ 2 ; Spooled local file
QE_type_remote_file equ 3 ; Spooled remote file
QE_type_modem equ 4 ; Spooled to remote modem
QE_type_batch equ 5 ; Spooled batch processor file

Definitions for output control settings:

QE_OC_keep equ 01000000b ; Keep after despooling (don't delete)
 ; For mail - allow delete only by owner
QE_OC_voice equ 00100000b ; For mail - mail file contains voice data
QE_OC_opened equ 00010000b ; For mail - message has been read
QE_OC_request_response equ 00001000b

 ; For mail, a response is requested

SET QUEUE ENTRY

SET QUEUE ENTRY allows you to set certain fields in newly created queue entry. You create a
queue entry by performing an open or create call on the file \\server\@MAIL (for mail
messages) or \\server\@resource (for printer queue entries.) You then use the returned handle in
the SET QUEUE ENTRY call. You cannot perform a SET QUEUE ENTRY on an existing
queue entry by opening the file \\server\spool_filename. The only way to match a queue entry
returned by the GET QUEUE ENTRY call, and the current open queue entry is to manually
compare the individual field settings with expected values. The only fields that can be altered by
a SET QUEUE ENTRY call are:

(only for @MAIL queue entries)

Assembler Interface

INPUT:
AX

LANtastic Programmer's Reference - 61

5FA1H

BX
Handle of queue entry (see notes above.)

DS:SI
Pointer to queue information buffer (see function 5FA0 for buffer format)

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSSetQueue(int *npHandle, struct queue_entry *cpQueue);

Pointer to int holding queue entry index (not updated)

Pointer to buffer holding queue entry information
CONTROL QUEUE

CONTROL QUEUE allows you to manipulate print jobs and physical printer despooling. You
must have the proper privilege (Q) to execute the commands marked with an "*".

LANtastic Programmer's Reference - 62

CQ_start equ 0 ;*Start despooling
CQ_halt equ 1 ;*Halt despooling
CQ_halt_EOJ equ 2 ;*Halt despooling at end of job
CQ_pause equ 3 ;*Pause the despooler at end of job
CQ_single equ 4 ;*Print single job
CQ_restart equ 5 ;*Restart the current queue entry
CQ_cancel equ 6 ; Cancel the current queue entry
CQ_hold equ 7 ; Hold the queue entry
CQ_release equ 8 ; Release a held queue entry
CQ_rush equ 9 ;*Make the queue entry a rushed job

Assembler Interface

INPUT:
AX
5FA2H

BL
Queue control command (commands listed above)

ES:DI
Pointer to ASCIZ server in the form \\server<0>

For Cancel, Hold, Release and Rush commands:

CX:DX
Queue sequence number to control

LANtastic Programmer's Reference - 63

For Start, Halt, Halt_EOJ, Pause, Single and Restart commands:

DX
Physical printer number:

0, 1, 2 for LPT1, LPT2, LPT3; 3, 4 for COM1, COM2. Any other value means all printers

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSControlQueue(int *npPtr, int nCmd, char *cpServer,

DWORD dwSeq);

Pointer to int holding printer number

Queue control command

Pointer to server name

Queue sequence number

LANtastic Programmer's Reference - 64

GET PRINTER STATUS

Assembler Interface

INPUT:
AX
5FA3H

BX
Physical printer number: 0, 1, 2 for LPT1, LPT2, LPT3; 3, 4 for COM1, COM2. All other
values mean all printers

DS:SI
Pointer to 15-byte buffer to receive printer status information (struct PS)

ES:DI
Pointer to ASCIZ server in the form \\server<0>. You must be logged into the server.

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

BX
Next physical printer number

DS:SI
Filled printer status buffer

LANtastic Programmer's Reference - 65

C Interface

extern int NOSGetStatus(int *npPtr, struct PS *cpPs, char *cpServer);

Pointer to printer number (will be updated)

Pointer to printer status buffer

Pointer to server name
If the printer is actively printing, then more detailed information is also returned.

Definition of a printer status entry:

PS struc
PS_state db ? ; Printer state (defined below)
PS_index dw ? ; Queue index corresponding to print job being
 ; despooled. (-1 if not despooling: ignore rest
 ; of fields)
PS_CPS dw ? ; Actual characters per second being output
PS_output_chars dd ? ; Characters actually output so far
PS_read_chars dd ? ; Characters actually read from despooled file so
 ; far. May be used to compute percent completed.
PS_copies dw ? ; Copies remaining to print
PS ends

Definition of printer states:

printer_state record PS_state_pause:1, PS_state_value:7
PS_state_disabled equ 0 ; Printer is disabled
PS_state_single_job equ 1 ; Printer will stop at end of job
PS_state_multijob equ 2 ; Printer should print multiple jobs

GET STREAM INFO

Assembler Interface

INPUT:
AX
5FA4H

BX
 Stream index number (0 based)

LANtastic Programmer's Reference - 66

DS:SI
Pointer to 13-byte buffer to receive stream information

ES:DI
Pointer to ASCIZ server in the form \\server<0>. You must be logged into the server.

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

BX
Next stream number

C Interface

extern int NOSGetStreamInfo(int *npIndex, struct logical_stream *cpStream,

 char *cpServer);

Pointer to int holding stream index (will be updated)

Pointer to stream buffer

Pointer to buffer containing server name
Each stream contains a logical printer resource template and a flag that indicates if jobs printed
for that logical printer resource should be queued or not.

Definition of logical stream entry:

LANtastic Programmer's Reference - 67

logical_stream struc
LS_queue db ? ; 0 Disabled, non-zero Enabled
LS_template db 12 dup (?) ; Template may contain ?'s (include "." as in
 ; @???????.???)
logical_stream ends

SET STREAM INFO

Assembler Interface

INPUT:
AX
5FA5H

BX
Stream index number (0 based)

DS:SI
Pointer to 13-byte buffer which contains stream information (see function 5FA4H for buffer
format)

ES:DI
Pointer to ASCIZ server in the form \\server<0>. You must be logged into the server.

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

LANtastic Programmer's Reference - 68

C Interface

extern int NOSSetStreamInfo(int *npIndex, struct logical_stream *cpStream,

 char *cpServer);

Pointer to int holding stream index

Pointer to stream buffer

Pointer to buffer containing server name
CREATE USER AUDIT ENTRY

This function can be used to perform the NET AUDIT command. You must have the U privilege
to use it successfully.

Assembler Interface

INPUT:
AX
5FA7H

DS:DX
Pointer to 8-byte (max) ASCIZ reason code

DS:SI
Pointer to 128-byte ASCIZ variable reason string

ES:DI
Pointer to ASCIZ server in the form \\server<0>. You must be logged into the server.

OUTPUT:
NC
If no error

CY
If error occurred

LANtastic Programmer's Reference - 69

AX
Error code if error

C Interface

extern int NOSCreateAudit(char *cpCode, char *cpReason, char *cpServer);

Pointer to reason code

Pointer to reason string

Pointer to buffer holding server name
GET ACTIVE USER INFORMATION

Assembler Interface

INPUT:
AX
5FB0H

BX
Login entry index of server (0 based)

DS:SI
Pointer to 44-byte buffer to receive a server login entry

ES:DI
Pointer to ASCIZ server in the form \\server<0>

OUTPUT:
NC
If no error

CY

LANtastic Programmer's Reference - 70

If error occurred

AX
Error code if error

BX
Next login entry index

DS:SI
Filled buffer with login entry information (buffer format is described below)

C Interface

extern int NOSGetUserInfo(int *npIndex, struct active_user_entry *cpInfo,

char *cpServer);

Pointer to int holding login entry index (updated)

Pointer to buffer to hold login entry

Pointer to buffer for server name
Definition of an active user entry:

active_user_entry
struc
AUE_VCID dw 0 ; Virtual circuit number
AUE_state db ? ; Login state (defined below)
AUE_command db ? ; Last command issued
AUE_IO db 5 dup (?) ; Number of I/O bytes (40 bit number)
AUE_requests db 3 dup (?) ; Number of server requests (24 bit number)
AUE_name db 16 dup (?) ; Name of logged in user
AUE_machine db 16 dup (?) ; Name of remote logged in machine
AUE_xprivilege db ? ; Extended privileges
AUE_time_left dw ? ; Time left in minutes (0 is unlimited)
active_user_entry
ends

Definition of the various login states and privileges:

LANtastic Programmer's Reference - 71

AUE_state_starting equ 00000000b ; We are in the middle of a login
AUE_state_in equ 00000001b ; We are fully logged in
AUE_state_RPL equ 00000010b ; Remote program load login

AUE_privilege_superACL equ 10000000b ; Bypass ACLs
AUE_privilege_superqueue equ 01000000b ; Bypass queue protection
AUE_privilege_peer equ 00100000b ; Treat as local process
AUE_privilege_supermail equ 00010000b ; Bypass mail protection
AUE_privilege_audit equ 00001000b ; The user can create audit entries
AUE_privilege_system equ 00000100b ; The user has system manager
 ; privileges
AUE_xprivilege_nopwchange equ 000000001b; User cannot change his password

Active user entry commands:

AUEC_login equ 0 ; Login into a server
AUEC_terminate equ 1 ; Process termination
AUEC_open equ 2 ; Open a file
AUEC_close equ 3 ; Close a file
AUEC_create equ 4 ; Create a file if it's there or not
AUEC_new equ 5 ; Create a new file that is not there
AUEC_unique equ 6 ; Create a unique file
AUEC_commit equ 7 ; Commit disk data to disk
AUEC_read equ 8 ; Read from file
AUEC_write equ 9 ; Write to file
AUEC_delete equ 10 ; Delete file
AUEC_set_attr equ 11 ; Set file attributes
AUEC_lock equ 12 ; Lock byte range
AUEC_unlock equ 13 ; Unlock byte range
AUEC_create_dir equ 14 ; Create a subdirectory
AUEC_delete_dir equ 15 ; Delete a subdirectory
AUEC_rename_file equ 16 ; Rename a file
AUEC_find_first equ 17 ; Find first matching file
AUEC_find_next equ 18 ; Find the next matching file
AUEC_disk_free equ 19 ; Get disk free space
AUEC_get_queue equ 20 ; Get a queue entry
AUEC_set_queue equ 21 ; Set a queue entry
AUEC_control_queue equ 22 ; Control the queue
AUEC_get_login equ 23 ; Return login information
AUEC_get_link equ 24 ; Return link description
AUEC_seek equ 25 ; Seek to a file position
AUEC_get_time equ 26 ; Get server's time
AUEC_audit equ 27 ; Create audit entry
AUEC_multi_open equ 28 ; Open file in a multitude of modes

LANtastic Programmer's Reference - 72

AUEC_change_password equ 29 ; Change a password
AUEC_disable_account equ 30 ; Disable account from further log ins
AUEC_copy_file equ 31 ; Local server file copy
AUEC_get_username equ 32 ; Get a username from account file
AUEC_translate_path equ 33 ; Translate a server's logical path
AUEC_create_indirect equ 34 ; Make indirect file
AUEC_get_indirect equ 35 ; Get indirect file text
AUEC_printer_status equ 36 ; Printer status obtained
AUEC_get_stream equ 37 ; Get logical print stream information
AUEC_set_stream equ 38 ; Set logical print stream information
AUEC_get_account equ 39 ; Get an account record
AUEC_shutdown equ 40 ; Request server shutdown
AUEC_cancel_shutdown equ 41 ; Cancel server shutdown
AUEC_stuff equ 42 ; Stuff server's keyboard
AUEC_write_with_commit equ 43 ; Write then commit data to disk

Example

printf("User %s logged in from %s\n",

U.AUE_name, U.AUE_machine);

GET SHARED DIRECTORY INFORMATION

Assembler Interface

INPUT:
AX
5FB1H

DS:SI
Pointer to 64-byte buffer to receive shared resource description

LANtastic Programmer's Reference - 73

ES:DI
Pointer to ASCIZ server and resource in the form \\server\shared-resource

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

CX
ACL privilege bits for requesting user

DS:SI
ASCIZ description of shared resource

C Interface
extern int NOSGetDirInfo(char *cpRes, char *cpServer, int *npAcl);

Pointer to 64 byte buffer to hold resource definition

(This is returned as an ASCIZ string)

Pointer to buffer holding server name and resource

Pointer to int to hold ACL bit settings

ACL bit definitions:

ACL_read equ 1000000000000000b ; (R) Allow open for read and reading
ACL_write equ 0100000000000000b ; (W) Allow open for write and writing
ACL_create_file equ 0010000000000000b ; (C) Allow file creation

LANtastic Programmer's Reference - 74

ACL_create_dir equ 0001000000000000b ; (M) Allow directory creation
ACL_lookup equ 0000100000000000b ; (L) Allow file/directory lookups
ACL_delete_file equ 0000010000000000b ; (D) Allow file deletion
ACL_delete_dir equ 0000001000000000b ; (K) Allow directory deletion
ACL_rename equ 0000000100000000b ; (N) Allow file renaming
ACL_execute equ 0000000010000000b ; (E) Allow program execution
ACL_physical equ 0000000001000000b ; (P) Allow physical access to device
ACL_attribute equ 0000000000100000b ; (A) Allow attribute changing
ACL_indirect equ 0000000000010000b ; (I) Allow expansion of indirect files

GET USERNAME FROM ACCOUNT FILE

Assembler Interface

INPUT:
AX
5FB2H

BX
Username entry index (0 for first entry, will be updated.)

DS:SI
Pointer to 16-byte buffer to receive username

ES:DI
Pointer to ASCIZ server in the form \\server

OUTPUT:
NC
If no error

CY
If error occurred

AX

LANtastic Programmer's Reference - 75

Error code if error

BX
Next username entry index (updated by call.)

DS:SI
16-Character username retrieved from server's account file (not in ASCIZ form)

C Interface

extern int NOSGetUserAcct(int *npIndex, char *cpUser, char *cpServer);

Pointer to int holding username entry index (updated)

Pointer to buffer to hold user name

Pointer to buffer holding server name
TRANSLATE PATH

TRANSLATE PATH either translates an indirect file into the full network path or it translates
the given path into the path relative to the server. This call can be used to determine how an
indirect file is going to expand.

For example, a server has a resource named programs which contains the following path: d:\
software\programs. If a user has redirected drive P: to \\server\programs and the
TRANSLATE PATH call is made with DX set to 00000010b, the string d:\software\programs
is returned.

Note that indirect files are only expanded for a network resource with the indirect (I) ACL
privilege enabled.

Assembler Interface

INPUT:
AX
5FB3H

DS:SI
Pointer to 128-byte buffer to receive translated path

LANtastic Programmer's Reference - 76

ES:DI
Pointer to full ASCIZ path including server name. (E.g. \\server\root\prog\file.ext)

DX
Type of translation to be performed. The OR of the following bits:

00000001b Recursively expand indirect files until all are resolved

00000010b Translate to server's physical path. (e.g C:\autoexec.bat)

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

DS:SI
ASCIZ translated path

C Interface

extern int NOSTranslatePath(char *cpPathXlate, char *cpPath, int nType);

Pointer to buffer to receive translated path

Pointer to buffer containing input path

Type of translation to perform

LANtastic Programmer's Reference - 77

CREATE INDIRECT FILE

CREATE INDIRECT FILE allows you to create an indirect file on a server.

Assembler Interface

INPUT:
AX
5FB4H

DS:SI
Pointer to 128-byte ASCIZ server relative path which will be the indirect file's contents

ES:DI
Pointer to indirect file's full ASCIZ path (e.g. "\\server\root\linkfile")

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSCreateIndir(char *cpPath, char *cpIndir);

Pointer to buffer for path (the DS:SI parameter)

Pointer to buffer with indirect filename (the ES:DI parameter)

Note that a server relative path can be either a path relative to the directory containing the
indirect file (for example, ..\dir\file.txt), or an absolute path beginning with a server resource

LANtastic Programmer's Reference - 78

name (for example, \C-DRIVE\dir\file.txt).
GET INDIRECT FILE CONTENTS

Get indirect file contents will return the contents of an indirect file. This call can be used to
determine what the actual contents of an indirect file are.

Assembler Interface

INPUT:
AX
5FB5H

DS:SI
Pointer to 128-byte buffer to receive indirect file contents

ES:DI
Pointer to full network path of indirect file

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

DS:SI
ASCIZ contents of indirect file (a path)

C Interface

extern int NOSGetIndir(char *cpData, char *cpIndir);

LANtastic Programmer's Reference - 79

Pointer to buffer for file contents

Pointer to buffer with indirect filename
GET SERVER'S TIME

Assembler Interface

INPUT:
AX
5FC0H

DS:SI
Pointer to 8-byte buffer to receive time information

ES:DI
Pointer to ASCIZ server in the form \\server. You must be logged into the server.

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

DS:SI
Filled buffer with time information

C Interface

extern int NOSGetTime(struct time_block *cpTime, char *cpServer);

Pointer to buffer to receive time information

LANtastic Programmer's Reference - 80

Pointer to buffer with server name
Definition of time buffer:

time_block struc
TB_year dw ? ; Year
TB_day db ? ; Day of month (1-31)
TB_month db ? ; Month (1-12)
TB_minutes db ? ; Minutes (0-59)
TB_hour db ? ; Hour (0-23)
TB_hundredths db ? ; Hundredths of seconds (0-99)
TB_seconds db ? ; Seconds (0-59)
time_block ends

SCHEDULE SERVER SHUTDOWN

Assembler Interface

INPUT:
AX
5FC8H

DS:SI
Pointer to 80 character ASCIZ reason string

ES:DI
Pointer to ASCIZ server in the form \\server.

CX
Number of minutes to shutdown (0 is immediate)

DX
Option flags

OUTPUT:
NC

LANtastic Programmer's Reference - 81

If no error

CY
If error occurred. (You must have the S privilege to execute this operation.)

AX
Error code if error

If a server shutdown is already pending, then subsequent calls will supercede the
pending shutdown.

C Interface

extern int NOSShutdown(char *cpReason, char *cpServer, int nMins, int nFlags);

Pointer to buffer containing reason string

Pointer to buffer with server name

Number of minutes to shutdown

Option flags
Shutdown option flags:

SHUTDOWN_option_reboot
SHUTDOWN_option_silent equ 0000000000000010b ; Do not notify users
SHUTDOWN_option_halt equ 0000000000000100b ; Halt after shutdown
SHUTDOWN_option_powerfail equ 0000000000001000b ; Shutdown due to power fail
 ; (Used by UPS.)
SHUTDOWN_option_reserved1 equ 0000000000010000b ; RESERVED
SHUTDOWN_option_reserved2 equ 0000000000100000b ; RESERVED
SHUTDOWN_option_reserved3 equ 0000000001000000b ; RESERVED
SHUTDOWN_option_reserved4 equ 0000000010000000b ; RESERVED
SHUTDOWN_option_user1 equ 0000000100000000b ; User definable
SHUTDOWN_option_user2 equ 0000001000000000b ; User definable
SHUTDOWN_option_user3 equ 0000010000000000b ; User definable
SHUTDOWN_option_user4 equ 0000100000000000b ; User definable
SHUTDOWN_option_user5 equ 0001000000000000b ; User definable
SHUTDOWN_option_user6 equ 0010000000000000b ; User definable
SHUTDOWN_option_user7 equ 0100000000000000b ; User definable
SHUTDOWN_option_reserved5 equ 1000000000000000b ; RESERVED

LANtastic Programmer's Reference - 82

Note

CANCEL SERVER SHUTDOWN

Assembler Interface

INPUT:
AX
5FC9H

ES:DI
Pointer to ASCIZ server in the form \\server.

(You must have the S privilege to use this call.)

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

If no server shutdown is pending, the call will return success.

C Interface

extern int NOSCancelShutdown(char *cpServer);

Pointer to buffer with server name
STUFF SERVER KEYBOARD BUFFER

Assembler Interface

LANtastic Programmer's Reference - 83

Note

INPUT:
AX
5FCAH

ES:DI
Pointer to ASCIZ server in the form \\server.

(You must have the S privilege to use this call.)

DS:SI
Pointer to 128 byte ASCIZ string to stuff into buffer. (The maximum number of characters that
can be stuffed is determined by the server's RUN BUFFER SIZE.)

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSStuffServerBuffer(char *cpText, char * cpServer);

Pointer to string to stuff

Pointer to buffer with server name
GET REDIRECTED PRINTER TIMEOUT

Assembler Interface

LANtastic Programmer's Reference - 84

INPUT:
AX
5FD0H

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

CX
Redirected printer timeout in ticks (18.2 ticks = 1 second). A value of 0 means timeouts are
disabled

C Interface

extern int NOSGetLPTTimeout(int *npTicks);

Pointer to int to set with printer timeout in ticks
SET REDIRECTED PRINTER TIMEOUTS

Assembler Interface

INPUT:
AX
5FD1H

CX
Printer timeout in ticks (18.2 ticks = 1 second). A value of 0 disables the timeout

LANtastic Programmer's Reference - 85

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSSetLPTTimeout(int nTicks);

Printer timeout in ticks
GET DOS SERVICE VECTOR

The GET and SET DOS SERVICE VECTOR calls allow you to take advantage of the DOS busy
checking that the redirector performs. Whenever DOS is safe to be called, the redirector calls the
routine pointed to by the SET VECTOR call. This routine can then use any DOS calls without
worrying about whether DOS is safe to be called.

To chain into the DOS service vector you must obtain the old vector using GET DOS SERVICE
VECTOR and save it. When your service routine is called you need to call the old vector before
beginning any processing.

Be careful when using this NOS facility. NOS will call your routine many times a
second (potentially thousands.)

Assembler Interface

INPUT:
AX
5FE0H

LANtastic Programmer's Reference - 86

Note

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

ES:BX
Pointer to current DOS service routine

C Interface

extern int NOSGetDOSVector(FARPROC *fpVector);

Pointer to location that will hold contents of DOS vector
SET DOS SERVICE VECTOR

Assembler Interface

INPUT:
AX
5FE1H

ES:BX
New DOS service vector

OUTPUT:
NC
If no error

CY
If error occurred

LANtastic Programmer's Reference - 87

AX
Error code if error

C Interface

extern int NOSSetDOSVector(FARPROC Vector);

far address of routine to be called using this vector
GET MESSAGE SERVICE VECTOR

The GET and SET MESSAGE SERVICE VECTOR routines can be used to write a customized
message service. To chain into the message service vector you must obtain the old vector using
GET MESSAGE SERVICE VECTOR and save it. When your service routine is called you need
to call the old vector before beginning any processing.

An example of the use of these calls is included in the sample programs in
Chapter 14.

Assembler Interface

INPUT:
AX
5FE2H

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

ES:BX

LANtastic Programmer's Reference - 88

Note

Pointer to current message service routine

C Interface

extern int NOSGetMsgVector(FARPROC *fpService);

Pointer to far pointer to routine that will hold address of

message service handler
SET MESSAGE SERVICE VECTOR

Assembler Interface

INPUT:
AX
5FE3H

ES:BX
New message service vector location

OUTPUT:
NC
If no error

CY
If error occurred

AX
Error code if error

C Interface

extern int NOSSetMsgVector(FARPROC Service);

Far pointer to routine that will be the new message service handler

LANtastic Programmer's Reference - 89

When a service routine is called ES:BX will point to the currently received
message.

LANtastic Programmer's Reference - 90

Note

tc "Other System Calls" \l2§Other System Calls

tc "Obtaining A List Of Shared Resources" \l3§Obtaining A List Of
Shared Resources

The server's shared resources appear as directories or files in the server's conceptual root
directory (i.e. \\SERVER\.). Physically, they exist within the server's network control directory.
To obtain a list of the server's shared resources you can issue a findfirst system call with a path
to the server's conceptual network root directory (for example, \\server*.*).

For example, to return all shared resources:

search_path db "\\server*.*",0
 . . .
 mov ah, 4eh
; Find first system call
 mov cx, 11h
; Include read-only & directory
 mov dx, search_path
 int 21h

 mov ax, 5fb1h
; Do a Get Shared Directory Information

 ;system call
 mov si, offset shared_information_buffer
 mov di, offset <filename result from find first/next call>
 int 21h

 mov ah, 4fh ; Find next system call
 int 21h

 . . . ; \\server has a linkacl whose information can be
 ; obtained through the 5FB1H call. Just point
 ; es:di at \\server<0>.

To return only the printer resources:

search_path db "\\server\@*.*",0
 . . .
 mov ah, 4eh ; Find first system call

LANtastic Programmer's Reference - 91

 mov cx, 01h ; Include read-only files
 mov dx, offset search_path
 int 21h

 . . . ; Open found file and read in data. Note that @MAIL
 ; will be returned as a printer and should be
 ; masked off.

 mov ah, 4fh ; Find next system call
 int 21h

LANtastic Programmer's Reference - 92

tc "Summary Of Network System Calls" \l2§Summary Of Network
System Calls

tc "DOS Compatible Calls" \l3§DOS Compatible Calls

Function Number
C Library Function

Purpose

5E00H
NOSGetMachineName()
Get Machine Name

5E02H
NOSSetPrinterSetup()
Set Printer Setup

5E03H
NOSGetPrinterSetup()
Get Printer Setup

5F02H
NOSGetRedirDevice()
Get Redirected Device Entry

5F03H
NOSRedirDevice()
Redirect Device

5F04H
NOSCancelRedir()
Cancel Device Redirection

LANtastic Programmer's Reference - 93

tc "LANtastic Network Operating System Calls" \l3§LANtastic Network
Operating System Calls

Function Number
C Library Function

Purpose

5F80H
NOSGetLogin()
Get Login Entry

5F81H
NOSLogin()
Login to a Server

5F82H
NOSLogout()
Logout of a Server

5F83H
NOSGetUserName()
Get Username Entry

5F84H
NOSGetServer()
Get Inactive Server Entry

5F85H
NOSChangePassword()
Change Password

5F86H
NOSDisable()
Disable Account

5F87H
NOSGetAccount()
Get Account

5F88H

LANtastic Programmer's Reference - 94

NOSLogoutAll
Logout from all servers

5F97H
NOSCopyFile()
Copy File

5F98H
NOSSendMsg()
Send Unsolicited Message

5F99H
NOSGetMsg()
Get Last Received Unsolicited Message

5F9AH
NOSGetMsgFlag()
Get Message Processing Flag

5F9BH
NOSSetMsgFlag()
Set Message Processing Flag

5F9CH
NOSPopUpMsg()
Pop Up Last Received Message

5FA0H
NOSGetQueue()
Get Queue Entry

5FA1H
NOSSetQueue()
Set Queue Entry

5FA2H
NOSControlQueue()
Control Queue

5FA3H
NOSGetStatus()
Get Printer Status

5FA4H
NOSGetStreamInfo()
Get Stream Info

LANtastic Programmer's Reference - 95

5FA5H
NOSSetStreamInfo()
Set Stream Info

5FA7H
NOSCreateAudit()
Create User Audit Entry

5FB0H
NOSGetUserInfo()
Get Active User Information

5FB1H
NOSGetDirInfo()
Get Shared Directory Information

5FB2H
NOSGetUserAcct()
Get Username From Account File

5FB3H
NOSTranslatePath()
Translate Path

5FB4H
NOSCreateIndir()
Create Indirect File

5FB5H
NOSGetIndir()
Get Indirect File Contents

5FC0H
NOSGetTime()
Get Server's Time

5FC8H
NOSShutdown()
Schedule Server Shutdown

5FC9H
NOSCancelShutdown()
Cancel Server Shutdown

5FCAH
LANtastic Programmer's Reference - 96

NOSStuffServerBuffer()
Stuff Server Keyboard Buffer

5FD0H
NOSGetLPTTimeout()
Get Redirected Printer Timeout

5FD1H
NOSSetLPTTimeout()
Set Redirected Printer Timeouts

5FE0H
NOSGetDOSVector()
Get DOS Service Vector

5FE1H
NOSSetDOSVector()
Set DOS Service Vector

5FE2H
NOSGetMsgVector()
Get Message Service Vector

5FE3H
NOSSetMsgVector()
Set Message Service Vector

LANtastic Programmer's Reference - 97

	LANtasticÒ Programmer's Reference
	This document is a reference to the programmatic interface for Artisoft's LANtastic Network Operating System (NOS) Version 4.00. Some knowledge of either C or assembler, and the DOS conventions for system call interrrupts, is necessary for you to fully understand the information in this document.

	Table Of Contents
	tc "Calling Conventions" l2§Calling Conventions
	tc "Assembly Language" l3§Assembly Language
	Each NOS function is described using an entry in a standard format. For example:
	5F80H GET LOGIN ENTRY

	tc "Assembler Interface" l3§Assembler Interface
	The INPUT section describes registers and values to use when calling the function. The OUTPUT section describes the information returned by the function. The outputs are always either in registers or in data areas addressed explicitly by an input parameter. Register identifiers are conventional Intel menmonics. Unless otherwise stated, NOS preserves registers across the call except for the flags. By convention, most function calls return the carry flag set to indicate an error (with the error number in AX), and leave the carry flag clear if the function was successful. Exceptions to this are noted in the description. References to ASCIZ strings mean null terminated strings of bytes.

	tc "C Language" l3§C Language
	Each NOS function call supported by the C library (see Chapter 14) is specified like this:
	extern int NOSGetLogin(int *npIndex, char *cpServer, int *npAdapter);
	npIndex Pointer to int containing login entry index
	cpServer Pointer to server name buffer
	npAdapter Pointer to int where returned adapter number is saved
	You must include the NOSLIB.H header file in your program to obtain the necessary external declarations for all the NOS functions. The header file NOS.H contains declarations for all the data structures relevant to NOS programming.

	tc "C Language Interface" l2§Assembly Language Interface
	The files that support the assembly language interface to NOS are as follows:
	NOS.INC The include file that defines all NOS constants and data structures
	NETBIOS.INC The include file that defines the NetBIOS NCB structures.

	tc "C Language Interface" l2§C Language Interface
	The files that support the C library interface to NOS are as follows:
	NOS.H The header file that defines all NOS constants and data structures
	NCB.H The header file that defines the NetBIOS NCB structures.
	NOSLIB.H The header file that defines the function call interface to the C library
	NOSLIB.LIB The object module library containing the NOS functions callable from C. (Note that versions of this file exist for both Microsoft C and Borland C.)
	LIBTEST.C An API test program that includes an example of each NOS function call.

	tc "The LANtastic Interface" l2§The LANtastic Interface
	The NOS services fall into two categories: standard DOS compatible network functions, and extended network functions specific to LANtastic. Since NOS is compatible with NetBIOS, the NetBIOS functions are also available using the INT 5C interface.
	tc "Network Pathnames" l3§Network Pathnames
	Many functions refer to network paths. NOS network paths are fully compatible with DOS network paths. The general syntax for a network path is:
	\serverresourcepath
	Where:
	server is a 1 to 15 character name of a network file server.
	resource is the name of a LANtastic resource on the server
	path is a DOS pathname on the server, relative to the directory identified by the resource
	For example:
	\MAIN_SERVERPROGSDATASAMPLE.TXT
	Refers to a file located on server MAIN_SERVER. The path required to access the file is PROGSDATASAMPLE.TXT. The name PROGS is a shared resource name that refers to a network resource.
	Some DOS networks (for example, the IBM-PC LAN) do not fully support paths for all systems calls (in particular FIND FIRST). NOS, however, supports full paths for all system calls that can take a path argument. This means that many public domain file and directory utilities will still operate when invoked with a network path.

	tc "Error Codes And Error Handling" l3§Error Codes And Error Handling
	All DOS compatible system calls and all NOS specific system calls, return error codes. The error code number is always returned in AX. When an error occurs, the carry flag (CY) is set. The C library functions return a value of -1 and stores the error code in NOSerrno. NOS provides a mechanism for expanding the error code number into a text string.
	This is a list of error codes that may be returned by NOS:
	When you expand the error code into a text string, NOS substitutes the network node name for the string of question marks in the error text. To expand an error code into a text string you need to issue a multiplex interrupt (INT 2FH) with the following parameters:
	Assembler Interface
	C Interface
	extern int NOSGetErrorText(int nError, char far **cpMessage);
	nError Error number
	cpMessage Pointer to far pointer to error text buffer
	A RESERVED error code causes the error string to be set to "General failure". The maximum width for the question mark field is 15 characters. The error text is automatically adjusted to remove trailing spaces from the text buffer. For example the text returned for error 33H on node HOST1 would be:
	Network node HOST1 is not listening
	The following code sequence will work for DOS 3.x, 4.x and 5.x:
	Here is an example using the C library interface (the printf %Fs far string specifier is peculiar to Microsoft C):
	In addition, the routine NOSperror() has been defined for the NOS C library:
	extern void NOSperror(char *cpMessage);
	cpMessage Pointer to identifying text
	This routine uses the NOSGetErrorText() function to print the error message identified by the value of NOSerrno. Since NOSerrno is reset with every library call, you can use NOSperror() to print the most recent error message. NOSperror() prints the string parameter in the call, followed by a ": ", followed by the NOS error message. For example:
	Will print:
	NOSLogin: Cannot locate network name
	On standard output.

	tc "Configuration Testing" l2§Configuration Testing
	tc "Testing For The Existence Of The NetBIOS" l3§Testing For The Existence Of The NetBIOS
	Before you can execute NetBIOS calls, you must install the NetBIOS software. On a LANtastic network you accomplish this by installing the Artisoft LANBIOS (LANBIOS2 for 2Mbps networks, AEX and AILANBIO for Ethernet.) On a LANtastic network you can simply check for the presence of the LANtastic redirector. If the redirector is present then so is the NetBIOS.The following code fragment shows how to test directly for the presence of the NetBIOS.

	tc "Testing For The Existence Of The Redirector, Server And " l3§Testing For The Existence Of The Redirector, Server And LANPUP
	You can issue a multiplex interrupt (2FH) to determine if the redirector, server or LANPUP software are present. Note that if the redirector is present on a LANtastic network, then the LANBIOS must also be present. This is an easy way to test for NetBIOS presence.
	Assembler Interface
	C Interface
	extern int NOSPresence();
	Returns BL as return value for the function, or -1 if nothing installed
	Example

	tc "Testing For The Existence Of SHARE" l3§Testing For The Existence Of SHARE
	You can issue a multiplex interrupt (2FH) to determine if SHARE is present. Note that this function is officially an "undocumented" DOS function.
	Assembler Interface
	C Interface
	extern int NOSSharePresence();
	Returns 0 if SHARE is installed or -1 if SHARE is not installed

	tc "Determining The Network Software Version" l3§Determining The Network Software Version
	You can issue a multiplex interrupt (2FH) to determine which version of the network software is running.
	Assembler Interface
	C Interface
	extern int NOSGetVersion();
	Returns major/minor version number as return value (AH<<8 | AL)

	The version numbers are returned as decimal numbers. For example, version 3.03 would return AH equal to 3 and AL equal to 3. In C, this statement:
	printf("Version %d.%d", version>>8, version & 0xFF);
	Prints:
	Version 3.3
	Use this printf statement to print the correct version number:
	printf("Version %d.%02d", version>>8, version & 0xFF);
	Will print:
	Version 3.03
	tc "Testing For The Alternate NetBIOS Interface - Interrupt 2AH" l3§Testing For The Alternate NetBIOS Interface - Interrupt 2AH
	The normal interface to the NetBIOS is via interrupt 5CH. You can also call NetBIOS using the alternate interrupt 2AH. The LANtastic redirector supports the 2A interface as well. The LANtastic redirector intercepts 2A interrupts and reformats them to 5C interrupts. Here is a list of the supported interrupt 2A functions.
	INT 2AH Function 0: INSTALLATION CHECK
	Checks if an interrupt 2AH interface is installed.
	Assembler Interface
	C Interface
	extern int NOSCheck2A();
	Returns -1 if not installed, 0 if installed

	INT 2AH Function 1: EXECUTE NetBIOS WITH NO ERROR RETRY
	Executes a NetBIOS command.
	Assembler Interface
	C Interface
	extern int NOSExecNetBIOS(BOOL bRetry, struct Ncb *cpNcb);
	bRetry TRUE to execute NetBIOS with error retry, FALSE otherwise
	cpNcb Points to NetBIOS NCB
	Returns -1 if error, NetBIOS error code saved in NOSerrno

	INT 2AH Function 5: GET RESOURCE INFORMATION
	Returns NetBIOS resources that are available for use.
	Assembler Interface
	C Interface
	extern int NOSGetResources(int *npNames, int *npNcbs, int *npSessions);
	npNames Pointer to int where # of available names will be stored
	npNcbs Pointer to int where # of available NCBs will be stored
	npSessions Pointer to int where # of available sessions will be stored
	Example

	tc "Controlling Redirected Printer Streams" l2§Controlling Redirected Printer Streams
	You can control how LANtastic sends output to redirected printers in three ways:
	Œ You can set a combine mode that does not separate multiple print jobs when programs terminate or when the printer is opened.
	Œ You can set a separate mode that separates print jobs when a program terminates or when the printer is opened and closed.
	Œ You can flush redirected output, thereby forcing the printer to begin printing.

	These functions implement the NET program's NET LPT COMBINE, NET LPT SEPARATE and NET LPT FLUSH commands. Two software interfaces allow you to control these functions. These interfaces consist of the interrupt 2AH interface and a standard interrupt 21H interface.

	A bug in LANtastic version 4.0 causes the interrupt 2A printer control functions to have no effect. The interrupt 21 functions work correctly.
	The DOS COMMAND.COM program always issues a "flush spooled output" call when it prompts for command input. This has the effect of forcing print jobs to be separated.Therefore these interrupts are ineffective across multiple program invocations performed through COMMAND.COM. The only exception to this is within DOS batch files, since COMMAND.COM does not prompt for command input while executing a batch file.
	tc "Controlling Printers With Interrupt 2A" l3§Controlling Printers With Interrupt 2A Functions
	SET SPOOLED OUTPUT TO COMBINE MODE
	All printer output is combined into a single print job regardless of the printer being opened, closed or programs terminating. Flush printer output calls will still be honoured however, and separate print jobs will be spooled.
	Assembler Interface
	C Interface
	extern int NOSSetCombine();

	SET SPOOLED OUTPUT IN SEPARATE MODE
	Printer output is not combined when multiple programs are run, or when the printer is opened or closed. This command implicitly starts a new print job.
	Assembler Interface
	C Interface
	extern int NOSSetSeparate();

	FLUSH PRINTER OUTPUT
	Printer output is flushed and a new print job is started. If no output exists to be flushed, then this function has no effect.
	Assembler Interface
	C Interface
	extern int NOS2AFlush();

	tc "Controlling Printers With Interrupt 21" l3§Controlling Printers With Interrupt 21 Functions
	RETURN REDIRECTED PRINTER MODE
	Returns the current printer mode.
	Assembler Interface
	C Interface
	extern int NOSGetPrinterMode();
	Returns the value of DL as the function value: 0 means combined, 1 means separated

	SET REDIRECTED PRINTER MODE
	Sets the current printer mode. Setting separated mode implicitly starts a new print job.
	Assembler Interface
	C Interface
	extern int NOSSetPrinterMode(int nMode);
	nMode 0 means combine, 1 means separate

	FLUSH PRINTER OUTPUT
	Printer output is flushed and a new print job is started. If no output exists to be flushed, then this function has no effect.
	Assembler Interface
	C Interface
	extern int NOSFlush();

	tc "DOS Compatible Network Functions" l2§DOS Compatible Network Functions
	LANtastic supports the standard DOS network system call functions with the exception of GET and SET PRINTER SETUP STRING (5E02H and 5E03H). Although you can issue these calls from a program they have no effect. This is because LANtastic relies upon the system manager to define the printer setup strings using the NET_MGR program.
	GET MACHINE NAME
	GET MACHINE NAME returns the name that your machine is known by on the network. You may use the name and NetBIOS name number returned by this function to perform NetBIOS commands. You must not use any other NetBIOS names added by LANtastic .
	Assembler Interface

	On return the machine name is space padded up to the full fifteen characters allowed in the name. The last byte is set to null. All fifteen characters are significant for NetBIOS names.
	C Interface
	extern int NOSGetMachineName(char *cpName, int *npName, BOOL *pbName);
	cpName Points to buffer to hold machine name
	npName Points to int to save NetBIOS name number
	pbName Points to BOOL, set TRUE if name is set, FALSE if not
	Example
	SET PRINTER SETUP
	This function initializes a setup string that is sent to the network printer at the start of each print job.
	Assembler Interface
	C Interface
	extern int NOSSetPrinterSetup(int nIndex, int nLen, char *cpStr);
	nIndex Redirection list index
	nLen Length of setup string (in case it contains nulls)
	cpStr Pointer to setup string

	LANtastic does not process this request since printer setup strings are controlled by the system administrator using the NET_MGR program. The system call does not return an error. The C library faithfully calls NOS despite the fact that nothing happens.
	GET PRINTER SETUP
	GET PRINTER SETUP will return the setup string set with the SET PRINTER SETUP function.
	Assembler Interface
	C Interface
	extern int NOSGetPrinterSetup(int nIndex, int *npLen, char *cpStr);
	nIndex Redirection list index
	npLen Points to int where length of setup string is saved
	cpStr Pointer to buffer for setup string

	LANtastic does not process this request since printer setup strings are controlled by the system administrator using the NET_MGR program. The system call does not return an error, however, and the length of the setup string (CX) returned will be 0. Again, the C library calls NOS despite this lack of activity.
	GET REDIRECTED DEVICE ENTRY
	GET REDIRECTED DEVICE ENTRY returns information about a single redirected device (see REDIRECT DEVICE function.) You can use this function to build a list of redirected devices.
	Assembler Interface
	C Interface
	extern int NOSGetRedirDevice(int nIndex, char *cpName, char *cpPath,
	WORD *wpDevice);
	nIndex int holding redirected device index
	cpName Points to buffer for device name
	cpPath Points to buffer for path
	wpDevice Points to WORD to hold device type. 0xFF masks the device type.
	Example

	REDIRECT DEVICE
	REDIRECT DEVICE allows you to make network connections between local devices and network paths.
	Assembler Interface
	C Interface
	extern int NOSRedirDevice(int nDevice, char *cpName, char *cpPath);
	nDevice Device type
	(Note that no CX equivalent is required, it's always 0)
	cpName Points to name of device
	cpPath Points to network path
	Example

	CANCEL DEVICE REDIRECTION
	CANCEL DEVICE REDIRECTION allows you to break a network connection and restore the local device to its former state.
	Assembler Interface
	C Interface
	extern int NOSCancelRedir(char *cpName);
	cpName Points to device name

	tc "NOS Extended Network Functions" l2§NOS Extended Network Functions
	NOS provides an extended set of network system calls that allow you access to all the LANtastic functions. These system calls are significantly extended beyond the few calls defined by DOS.
	Several functions retrieve indexed data. You always pass the index parameter in the BX register. The index is always zero based unless otherwise noted. Upon return from the function call, BX will contain the index of the next table entry. The index of the current entry will be BX minus 1. If the index passed to the function call in BX refers to an invalid entry, NOS will increment BX until it finds a valid entry. The call returns this entry and BX is incremented. In these cases, you must assume only that an index value of BX minus 1 is valid. Some functions take such an index as a parameter, but do not increment it as described. Study the description of each function call carefully to see whether the call changes the index.
	GET LOGIN ENTRY
	Assembler Interface
	C Interface
	extern int NOSGetLogin(int *npIndex, char *cpServer, int *npAdapter);
	npIndex Pointer to int containing login entry index
	cpServer Pointer to server name buffer
	npAdapter Pointer to int where returned adapter number is saved
	Example

	The login entry index (the BX input parameter) corresponds to the index used in the GET USERNAME ENTRY call (5F83h). A combination of these calls allows you to enumerate current logged in users.
	LOGIN TO A SERVER
	Assembler Interface
	C Interface
	extern int NOSLogin(char *cpLogin, int nAdapter);
	cpLogin Pointer to server, username and password nAdapter Adapter number to use

	LANtastic will convert the input string to uppercase before use.
	LOGOUT OF A SERVER
	Assembler Interface
	C Interface
	extern int NOSLogout(char *cpServer);
	cpServer Pointer to server name

	GET USERNAME ENTRY
	Assembler Interface
	C Interface
	extern int NOSGetUserName(int *npIndex, char *cpName, int *npAdapter);
	npIndex Pointer to int holding username entry index (not updated)
	cpName Pointer to buffer for username
	npAdapter Pointer to int to receive adapter number
	Example

	The login entry index (the BX input parameter) corresponds to the index used in the GET LOGIN ENTRY call (5F80h). A combination of these calls allows you to enumerate current logged in users.
	GET INACTIVE SERVER ENTRY
	Assembler Interface
	C Interface
	extern int NOSGetServer(int *npIndex, char *cpServer, int *npAdapter);
	npIndex Pointer to int holding server name entry index
	(This is not updated.)
	cpServer Pointer to buffer for server name
	npAdapter Pointer to int to receive adapter number
	Example

	The redirector maintains the list of available servers. The number of entries in the list is determined by the value of the LOGINS= switch on the redirector command line. On a network with more servers present, only the most recently active server names will be stored. (For example, servers that you recently logged out from.) Servers with their "Send Server ID" capability disabled will never appear in this list.
	CHANGE PASSWORD
	Assembler Interface
	C Interface
	extern int NOSChangePassword(char *cpStr);
	cpStr Pointer to buffer holding a string of the form:
	\serverold-password0new-password0

	DISABLE ACCOUNT
	DISABLE ACCOUNT disables the current logged in account. It applies only when concurrent login entries are set to 1 (by NET_MGR.) The account must then be reenabled by the system manager. After a DISABLE ACCOUNT operation, a logged in user may continue to use the account until they log out.
	Assembler Interface
	C Interface
	extern int NOSDisable(char *cpStr);
	cpStr Pointer to \serverpassword string

	GET ACCOUNT
	GET ACCOUNT returns the information for the account used to log into this server.
	Assembler Interface
	C Interface
	extern int NOSGetAccount(struct user_account *cpAccount, char *cpServer);
	cpAccount Pointer to account structure
	cpServer Pointer to server name
	The buffer format is as follows:
	Privilege bits for UA_privilege:
	Example

	LOGOUT FROM ALL SERVERS
	This call is equivalent to performing a logout call for all the servers that you are currently logged into.
	Assembler Interface
	C Interface
	extern int NOSLogoutAll();

	COPY FILE
	COPY FILE copies the source file (designated by the source handle) to the destination file (designated by the destination handle.) The copy is performed by the server and requires no workstation resources. Both files must reside on the same server.
	Assembler Interface
	C Interface
	extern int NOSCopyFile(DWORD *dwAmount, int nSource, int nDest);
	dwAmount Pointer to long containing amount to be copied.
	(Updated with actual amount copied.)
	nSource Source file handle
	nDest Destination file handle
	Example

	SEND UNSOLICITED MESSAGE
	This function uses the NOS message service to transmit messages across the network. The messages have a fixed format. Transmission of a message to yourself is perfectly legal (and useful.)
	This is the format of a message buffer. The 16-byte name fields (MB_machine, MB_server and MB_user) are null terminated and contain the characters to be matched. For example AB<0> will match ABxxxxxx. Note that a null string will match any other string, that is, any network name and will send the message to all machines on the network. The server names should not contain leading '\' characters. The names are case sensitive. You should convert any strings to be uppercase only to match LANtastic conventions.
	You can use the MB_server and MB_user fields to restrict the message recipients. For example, setting the MB_machine and MB_user fields to the null string and the MB_server field to "XSERVER" will send the message to all users currently logged into the machine XSERVER.
	Message buffer type. The MBT_general type is used by NET and LANPUP to send messages.
	Assembler Interface
	C Interface
	extern int NOSSendMsg(struct message_buffer *cpMsg);
	cpMsg Pointer to message buffer

	Currently, no errors are returned by NOS.
	GET LAST RECEIVED UNSOLICITED MESSAGE
	This function allows you to retrieve a copy of the last message received on this machine.
	Assembler Interface
	C Interface
	extern int NOSGetMsg(struct message_buffer far *cpMsg);
	cpMsg Address of message buffer to copy message to.

	GET MESSAGE PROCESSING FLAG
	This function returns a flag indicating the current disposition of the NOS message service on this machine.
	Assembler Interface
	C Interface
	extern int NOSGetMsgFlag(int *npFlag);
	npFlag Pointer to int to receive copy of message processing flag
	Format of returned message processing flag:

	SET MESSAGE PROCESSING FLAG
	This function allows you to control the disposition of the LANtastic message service.
	Assembler Interface
	C Interface
	extern int NOSSetMsgFlag(int nFlag);
	nFlag New value for message processing flag

	POP UP LAST RECEIVED MESSAGE
	POP UP LAST RECEIVED MESSAGE uses the LANtastic message service to display the last received message on the screen. The message is placed on the specified line for the specified time. When LANtastic removes the message, the original screen contents are restored. The user can remove the message before the display time elapses by pressing the Esc key. LANtastic cannot pop up a message if the screen is in a graphics mode.
	Assembler Interface
	C Interface
	extern int NOSPopUpMsg(int nTicks, int nLine);
	nTicks Number of ticks
	cpMessage Line number

	The only error currently returned is 0BH (Invalid format). NOS returns this error if the screen is not currently in a text mode and the message cannot be displayed.
	GET QUEUE ENTRY
	Assembler Interface
	C Interface
	extern int NOSGetQueue(int *npIndex, struct queue_entry *cpQueue,
	char *cpServer);
	npIndex Pointer to int holding queue entry index
	(This will be updated.)
	cpQueue Pointer to buffer to hold queue entry information
	cpServer Pointer to buffer for server name
	Definition of a queue entry:
	Different queue entry statuses:
	Different types of queue entries:
	Definitions for output control settings:

	SET QUEUE ENTRY
	SET QUEUE ENTRY allows you to set certain fields in newly created queue entry. You create a queue entry by performing an open or create call on the file \server@MAIL (for mail messages) or \server@resource (for printer queue entries.) You then use the returned handle in the SET QUEUE ENTRY call. You cannot perform a SET QUEUE ENTRY on an existing queue entry by opening the file \serverspool_filename. The only way to match a queue entry returned by the GET QUEUE ENTRY call, and the current open queue entry is to manually compare the individual field settings with expected values. The only fields that can be altered by a SET QUEUE ENTRY call are:
	QE_output_control
	QE_copies
	QE_destination (only for @MAIL queue entries)
	QE_comment
	Assembler Interface
	C Interface
	extern int NOSSetQueue(int *npHandle, struct queue_entry *cpQueue);
	npIndex Pointer to int holding queue entry index (not updated)
	cpQueue Pointer to buffer holding queue entry information

	CONTROL QUEUE
	CONTROL QUEUE allows you to manipulate print jobs and physical printer despooling. You must have the proper privilege (Q) to execute the commands marked with an "*".
	Assembler Interface
	C Interface
	extern int NOSControlQueue(int *npPtr, int nCmd, char *cpServer,
	DWORD dwSeq);
	npPtr Pointer to int holding printer number
	nCmd Queue control command
	cpServer Pointer to server name
	dwSeq Queue sequence number

	GET PRINTER STATUS
	Assembler Interface
	C Interface
	extern int NOSGetStatus(int *npPtr, struct PS *cpPs, char *cpServer);
	npPtr Pointer to printer number (will be updated)
	cpPs Pointer to printer status buffer
	cpServer Pointer to server name
	If the printer is actively printing, then more detailed information is also returned.
	Definition of a printer status entry:
	Definition of printer states:

	GET STREAM INFO
	Assembler Interface
	C Interface
	extern int NOSGetStreamInfo(int *npIndex, struct logical_stream *cpStream,
	char *cpServer);
	npIndex Pointer to int holding stream index (will be updated)
	cpStream Pointer to stream buffer
	cpServer Pointer to buffer containing server name
	Each stream contains a logical printer resource template and a flag that indicates if jobs printed for that logical printer resource should be queued or not.
	Definition of logical stream entry:

	SET STREAM INFO
	Assembler Interface
	C Interface
	extern int NOSSetStreamInfo(int *npIndex, struct logical_stream *cpStream,
	char *cpServer);
	npIndex Pointer to int holding stream index
	cpStream Pointer to stream buffer
	cpServer Pointer to buffer containing server name

	CREATE USER AUDIT ENTRY
	This function can be used to perform the NET AUDIT command. You must have the U privilege to use it successfully.
	Assembler Interface
	C Interface
	extern int NOSCreateAudit(char *cpCode, char *cpReason, char *cpServer);
	cpCode Pointer to reason code
	cpReason Pointer to reason string
	cpServer Pointer to buffer holding server name

	GET ACTIVE USER INFORMATION
	Assembler Interface
	C Interface
	extern int NOSGetUserInfo(int *npIndex, struct active_user_entry *cpInfo,
	char *cpServer);
	npIndex Pointer to int holding login entry index (updated)
	cpInfo Pointer to buffer to hold login entry
	cpServer Pointer to buffer for server name
	Definition of an active user entry:
	Definition of the various login states and privileges:
	Active user entry commands:
	Example

	GET SHARED DIRECTORY INFORMATION
	Assembler Interface
	C Interface
	extern int NOSGetDirInfo(char *cpRes, char *cpServer, int *npAcl);
	cpRes Pointer to 64 byte buffer to hold resource definition
	(This is returned as an ASCIZ string)
	cpServer Pointer to buffer holding server name and resource
	npAcl Pointer to int to hold ACL bit settings
	ACL bit definitions:

	GET USERNAME FROM ACCOUNT FILE
	Assembler Interface
	C Interface
	extern int NOSGetUserAcct(int *npIndex, char *cpUser, char *cpServer);
	npIndex Pointer to int holding username entry index (updated)
	cpUser Pointer to buffer to hold user name
	cpServer Pointer to buffer holding server name

	TRANSLATE PATH
	TRANSLATE PATH either translates an indirect file into the full network path or it translates the given path into the path relative to the server. This call can be used to determine how an indirect file is going to expand.
	For example, a server has a resource named programs which contains the following path: d:softwareprograms. If a user has redirected drive P: to \serverprograms and the TRANSLATE PATH call is made with DX set to 00000010b, the string d:softwareprograms is returned.
	Note that indirect files are only expanded for a network resource with the indirect (I) ACL privilege enabled.
	Assembler Interface
	C Interface
	extern int NOSTranslatePath(char *cpPathXlate, char *cpPath, int nType);
	cpPathXlate Pointer to buffer to receive translated path
	cpServer Pointer to buffer containing input path
	nType Type of translation to perform

	CREATE INDIRECT FILE
	CREATE INDIRECT FILE allows you to create an indirect file on a server.
	Assembler Interface
	C Interface
	extern int NOSCreateIndir(char *cpPath, char *cpIndir);
	cpPath Pointer to buffer for path (the DS:SI parameter)
	cpIndir Pointer to buffer with indirect filename (the ES:DI parameter)
	Note that a server relative path can be either a path relative to the directory containing the indirect file (for example, ..dirfile.txt), or an absolute path beginning with a server resource name (for example, C-DRIVEdirfile.txt).

	GET INDIRECT FILE CONTENTS
	Get indirect file contents will return the contents of an indirect file. This call can be used to determine what the actual contents of an indirect file are.
	Assembler Interface
	C Interface
	extern int NOSGetIndir(char *cpData, char *cpIndir);
	cpData Pointer to buffer for file contents
	cpIndir Pointer to buffer with indirect filename

	GET SERVER'S TIME
	Assembler Interface
	C Interface
	extern int NOSGetTime(struct time_block *cpTime, char *cpServer);
	cpTime Pointer to buffer to receive time information
	cpServer Pointer to buffer with server name
	Definition of time buffer:

	SCHEDULE SERVER SHUTDOWN
	Assembler Interface

	If a server shutdown is already pending, then subsequent calls will supercede the pending shutdown.
	C Interface
	extern int NOSShutdown(char *cpReason, char *cpServer, int nMins, int nFlags);
	cpReason Pointer to buffer containing reason string
	cpServer Pointer to buffer with server name
	nMins Number of minutes to shutdown
	nFlags Option flags
	Shutdown option flags:
	CANCEL SERVER SHUTDOWN
	Assembler Interface

	If no server shutdown is pending, the call will return success.
	C Interface
	extern int NOSCancelShutdown(char *cpServer);
	cpServer Pointer to buffer with server name
	STUFF SERVER KEYBOARD BUFFER
	Assembler Interface
	C Interface
	extern int NOSStuffServerBuffer(char *cpText, char * cpServer);
	cpText Pointer to string to stuff
	cpServer Pointer to buffer with server name

	GET REDIRECTED PRINTER TIMEOUT
	Assembler Interface
	C Interface
	extern int NOSGetLPTTimeout(int *npTicks);
	npTicks Pointer to int to set with printer timeout in ticks

	SET REDIRECTED PRINTER TIMEOUTS
	Assembler Interface
	C Interface
	extern int NOSSetLPTTimeout(int nTicks);
	nTicks Printer timeout in ticks

	GET DOS SERVICE VECTOR
	The GET and SET DOS SERVICE VECTOR calls allow you to take advantage of the DOS busy checking that the redirector performs. Whenever DOS is safe to be called, the redirector calls the routine pointed to by the SET VECTOR call. This routine can then use any DOS calls without worrying about whether DOS is safe to be called.
	To chain into the DOS service vector you must obtain the old vector using GET DOS SERVICE VECTOR and save it. When your service routine is called you need to call the old vector before beginning any processing.

	Be careful when using this NOS facility. NOS will call your routine many times a second (potentially thousands.)
	Assembler Interface
	C Interface
	extern int NOSGetDOSVector(FARPROC *fpVector);
	fpService Pointer to location that will hold contents of DOS vector
	SET DOS SERVICE VECTOR
	Assembler Interface
	C Interface
	extern int NOSSetDOSVector(FARPROC Vector);
	Vector far address of routine to be called using this vector

	GET MESSAGE SERVICE VECTOR
	The GET and SET MESSAGE SERVICE VECTOR routines can be used to write a customized message service. To chain into the message service vector you must obtain the old vector using GET MESSAGE SERVICE VECTOR and save it. When your service routine is called you need to call the old vector before beginning any processing.

	An example of the use of these calls is included in the sample programs in Chapter 14.
	Assembler Interface
	C Interface
	extern int NOSGetMsgVector(FARPROC *fpService);
	fpService Pointer to far pointer to routine that will hold address of
	message service handler
	SET MESSAGE SERVICE VECTOR
	Assembler Interface
	C Interface
	extern int NOSSetMsgVector(FARPROC Service);
	Service Far pointer to routine that will be the new message service handler

	When a service routine is called ES:BX will point to the currently received message.
	tc "Other System Calls" l2§Other System Calls
	tc "Obtaining A List Of Shared Resources" l3§Obtaining A List Of Shared Resources
	The server's shared resources appear as directories or files in the server's conceptual root directory (i.e. \SERVER.). Physically, they exist within the server's network control directory. To obtain a list of the server's shared resources you can issue a findfirst system call with a path to the server's conceptual network root directory (for example, \server*.*).
	For example, to return all shared resources:
	To return only the printer resources:

	tc "Summary Of Network System Calls" l2§Summary Of Network System Calls
	tc "DOS Compatible Calls" l3§DOS Compatible Calls
	tc "LANtastic Network Operating System Calls" l3§LANtastic Network Operating System Calls

